Journal of Medicinal Chemistry

© Copyright 1998 by the American Chemical Society

Volume 41, Number 5

February 26, 1998

Communications to the Editor

(R)-3, N-Dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzenesulfonamide: The First Selective 5-HT₇ Receptor Antagonist

Ian T. Forbes,*,† Steven Dabbs,† D. Malcolm Duckworth,[†] Andrew J. Jennings,[†] Frank D. King,[†] Peter J. Lovell,[†] Anthony M. Brown,[‡] Lissa Collin,[‡] Jim J. Hagan,[‡] Derek N. Middlemiss,[‡] Graham J. Riley,[‡] David R. Thomas,[‡] and Neil Upton[‡]

> SmithKline Beecham Pharmaceuticals. New Frontiers Science Park, Third Avenue, Harlow, Essex, England, CM19 5AW

> > Received August 4, 1997

The 5-HT₇ receptor is the most recent addition to the burgeoning family of 5-HT receptors.¹ 5-HT₇ receptors have been cloned from rat,²⁻⁴ mouse,⁵ guinea pig,⁶ and human⁷ cDNA and exhibit a high degree of interspecies homology (approximately 95%) but a low sequence homology with other 5-HT receptors (<40%). The pharmacological profile of this receptor is unique yet consistent across species. Thus, high 5-HT₇ receptor affinity is observed for 5-CT, 5-HT, 5-MeOT, and methiothepin, moderate affinity for 8-OHDPAT, clozapine, and ritanserin, and low affinity for pindolol, sumatriptan, and buspirone. Recent data have demonstrated the existence of four 5-HT7 splice variants in humans and three in rat.⁸ Preliminary pharmacological comparison of the long $(5-HT_{7a})$ and short $(5-HT_{7b})$ forms of the receptor have revealed no substantial differences in receptor binding affinity.⁹ 5-HT₇ receptors are positively coupled to adenylate cyclase when expressed in cell lines, 2-4,7 native guinea pig hippocampus, 6 and cultured vascular smooth muscle cells.¹⁰ No selective ligands for the 5-HT₇ receptor, agonists or antagonists, have been reported.

The greatest abundance of 5-HT7 mRNA is found in the brain where it is discretely located within thalamus, hypothalamus, and various limbic and cortical regions.^{2,4,7,11} Autoradiographic techniques confirm that the distribution of 5-HT₇ receptor binding sites in rat and guinea pig brain matches, to a large extent, the mRNA distribution.^{11–13}

The biological functions of the 5-HT₇ receptor are poorly understood. It has been proposed that the 5-HT₇ receptor may be involved in the pathophysiology of sleep disorders,^{6,14} depression,^{14,15} and schizophrenia,¹⁶ although the evidence for this is very preliminary. In the periphery, 5-HT7 receptor stimulation causes relaxation of the blood vessels in monkey,¹⁷ dog,¹⁸ and rabbit.¹⁹ Clearly the therapeutic utility of 5-HT7 receptor ligands awaits the discovery of selective agonists and antagonists. We now report our preliminary findings on the identification of a novel series of selective 5-HT7 receptor antagonists.

High-throughput screening of the SmithKline Beecham Compound Bank against the cloned human 5-HT₇ receptor identified the sulfonamide **1**,²⁰ which showed modest affinity (p K_i 7.2) for the 5-HT₇ receptor and an indication of selectivity over a range of other receptors. Since compound 1 contains two asymmetric centers and is therefore a mixture of four compounds, we prepared and evaluated the four individual enantiomers for 5-HT₇ receptor affinity (2-5 in Table 1).²¹ From these results it appears that the R,R stereochemistry is important for highest 5-HT7 receptor affinity. It can be seen that the *R* chirality at center a is essential for 5-HT₇ receptor affinity, whereas the chirality at center b is less important. From an SAR study around compound 2, it was found that the chiral center in the piperidine ring could be removed by moving the methyl substituent to the 4-position (removal of the 3-methyl group resulted in a loss of affinity, as did addition of a second methyl group at the 3-position), thus simplifying the structure considerably. Moving the methyl substituent to the 2-position also resulted in a loss of affinity. Additionally, it was found that a wide range of aromatic nuclei could replace the naphthalene ring in $\mathbf{2}$, while retaining 5-HT₇

^{*} To whom correspondence should be addressed.

[†] Department of Medicinal Chemistry. [‡] Department of Neuroscience Research.

Table 1. 5-HT₇ Receptor Affinities for Compound **1** and Its Enantiomers^{*a*}

stereochemistry			
compd	а	b	$pK_i 5-HT_7^b$
1	R, S	R, S	7.2
2	R	R	6.9
3	R	S	6.2
4	S	R	5.8
5	S	S	<5.0

^{*a*} All values represent the mean of at least two determinations, with each determination lying within 0.2 log unit of the mean. ^{*b*} Binding affinity (cloned human receptors expressed in HEK 293 cells; [³H]-5-CT).

Table 2. Investigation of Alternative Aromatic Ring Systems

^{*a*} All values represent the mean of at least two determinations, with each determination lying within 0.2 log unit of the mean. ^{*b*} Binding affinity (cloned human receptors expressed in HEK 293 cells; [³H]-5-CT).

Scheme 1^a

Z= benzyloxycarbonyl

^{*a*} Reagents: (a) (COCl)₂, DMF, CH_2Cl_2 , 4-methylpiperidine, Et_3N (93%); (b) LiAlH₄, THF (78%); (c) 3-methylbenzenesulfonyl chloride, diisopropylethylamine, CH_2Cl_2 (40%).

receptor affinity²¹ as illustrated in Table 2. This resulted in the identification of the 3-methylphenylsulfonamide **6**, SB-258719 as the first 5-HT₇ receptor antagonist with 100-fold selectivity over a range of other receptors.

Compound **6** (SB-258719) was synthesized as shown in Scheme 1. The homologated alanine derivative **7** was prepared according to the literature procedure.²² The chiral integrity of **7** was shown to be >95% (*R*) by NMR, by conversion to diastereomeric amide derivatives, and

Table 3. Receptor Binding Profile of 6^a

r

	-	•	
receptor	affinity (p <i>K</i> i)	receptor	affinity (p <i>K</i> _i)
5-HT _{1A}	<5.1	5-HT _{2C}	<4.8
$5-HT_{1B}$	< 5.3	$5-HT_4$	<5.0
$5-HT_{1D}$	5.5	$5-HT_6$	<4.8
$5-HT_{1E}$	<4.8	5-HT7	$7.5 \pm 0.04 \ (n=6)$
5-HT _{1F}	< 5.2	adrenergic α_{1B}	<4.8
5-HT _{2A}	<4.8	dopaminergic D ₂	5.4
$5-HT_{2B}$	< 5.3	dopaminergic D ₃	5.4

^a All values represent the mean of at least two determinations. with each determination lying within 0.2 log unit of the mean. Receptors and radioligands used in binding assay: 5-HT_{1A} (cloned human receptors in HEK 293 cells; [3H]-8-OH-DPAT); 5-HT1B (cloned human receptors in CHO cells; [3H]-5-HT); 5-HT_{1D} (cloned human receptors in CHO cells; [³H]-5-HT); 5-HT_{1E} (cloned human receptors in CHO cells; [3H]-5-HT); 5-HT1F (cloned human receptors in CHO cells; [3H]-5-HT); 5-HT_{2A} (cloned human receptors in HEK 293 cells; $[^{3}H]$ -ketanserin); 5-HT_{2B} (cloned human receptors in HEK 293 cells; [³H]-5-HT); 5-HT_{2C} (cloned human receptors in HEK 293 cells; [³H]mesulergine); 5-HT₄ (guinea pig hippocampus; [¹²⁵I]SB-207710); 5-HT₆ (cloned human receptors in HeLa cells; [³H]LSD); 5-HT₇ (cloned human receptors in HEK 293 cells; [³H]5CT); D₂ (cloned human receptors in CHO cells; [¹²⁵I]iodosulpride); D₃ (cloned human receptors in CHO cells; [1251]iodosulpride).

by comparison with the (*S*) enantiomer. Conversion of **7** to the acid chloride followed by reaction with 4-methylpiperidine yielded the amide **8**. Treatment of **8** with lithium aluminum hydride effected the reduction of both the amide and the carbamate functionalities to afford in good yield the key chiral amine **9**, which was coupled with 3-methylbenzenesulfonyl chloride to give the desired sulfonamide **6**.

As can be seen from Table 3, compound **6** has a p K_i of 7.5 for the 5-HT₇ receptor and at least 100-fold selectivity over a range of other receptors. Particularly noteworthy is the lack of affinity at the 5-HT_{1A} receptor. Thus, compound **6** represents the first reported ligand which has selectivity for the 5-HT₇ receptor.

Compound **6** was also evaluated in a functional model of 5-HT₇ receptor activation by examination of adenylyl cyclase activity in HEK 293 cells stably expressing the human 5-HT₇ receptor. Adenylyl cyclase activity was determined by measuring the conversion of [³³P]ATP to [³³P]cAMP, which was isolated using the method of Salomon.²³ The 5-HT₇ receptor agonist 5-carboxamidotryptamine (5-CT) stimulated basal adenylyl cyclase activity with a pEC₅₀ of 7.7 \pm 0.1 (n = 3). Compound **6** did not stimulate basal activity on its own, thus indicating no agonist activity, but produced a surmountable antagonism of the 5-CT response (Figure 1) with a calculated p $K_{\rm B}$ of 7.0 \pm 0.1 (n = 3). Thus compound **6** possesses a profile consistent with competitive antagonism at the human 5-HT₇ receptor.

In conclusion, the chiral aryl sulfonamide **6** is the first example of a selective 5-HT₇ receptor antagonist discovered from a high-throughput screening lead. It has been shown that the *R* stereochemistry in the side chain is important for high 5-HT₇ receptor affinity and that a 4-methylpiperidine substituent is preferred to the 3-isomer. The availability of selective tools such as **6** should enable the biological role of 5-HT₇ receptors in the central nervous system and in the periphery to be elucidated.

Supporting Information Available: Experimental procedures, including analytical and spectral data, for the prepa-

Figure 1. Effect of compound **6** on 5-CT-stimulated adenylyl cyclase activity. Stimulation of adenylyl cyclase activity in human 5-HT₇/HEK 293 membranes by 5-CT alone (**•**) and in the presence of 1 μ M compound **6** (\bigcirc). Data points represent the mean of duplicate determinations from a typical experiment which was repeated twice.

ration of **6** (3 pages). Ordering information is given on any current masthead page.

References

- For a review, see: Eglen, R. M.; Jasper, J. R.; Chang, D. J.; Martin, G. R. The 5-HT₇ Receptor: Orphan Found. *Trends Pharmacol. Sci.* **1997**, *18*, 104–107.
- (2) Shen, Y.; Monsma, F. J.; Metcalf, M. A.; Jose, P. A.; Hamblin, M. W.; Sibley, D. R. Molecular Cloning and Expression of a 5-HT₇ Serotonin Receptor Subtype. *J. Biol. Chem.* **1993**, *268*, 18200– 18204.
- (3) Lovenberg, T. W.; Baron, B. M.; Lecea, L. de; Miller, J. O.; Prosser, R. A.; Rea, M. A.; Foye, P. E.; Rucke, M.; Slone, A. L.; Siegel, B. W.; Danielson, P. E.; Sutcliffe, J. G.; Erlander, M. G. A Novel Adenyl Cyclase-Activating Serotonin Receptor (5-HT₇) Implicated in the Regulation of Mammalian Circadian Rhythms. *Neuron* **1993**, *11*, 449–458.
- (4) Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J.-M.; Schwartz, J.-C. Molecular Cloning, Characterisation and Localisation of a High Affinity Serotonin Receptor (5-HT₇) Activating cAMP Formation. *Proc. Natl. Acad. Sci.* U.S.A. **1993**, *90*, 8547–8551.
- (5) Plassat, J.-L.; Amlaiky, N.; Hen, R. Molecular Cloning of a Mammalian Serotonin Receptor that Activates Adenylate Cyclase. *Mol. Pharmacol.* **1993**, *44*, 229-236.
- (6) Tsou, A.-p.; Kosaka, A.; Bach, C.; Zuppan, P.; Yee, C.; Tom, L.; Alvarez, R.; Ramsey, S.; Bonhaus, D. W.; Stefanich, E.; Jakeman, L.; Eglen, R. M.; Chan, H. W. Cloning and Expression of a 5-HT₇ Receptor Positively Coupled to Adenylyl Cyclase. *J. Neurochem.* **1994**, *63*, 456–464.

- (7) Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T. A.; Weinshank, R. L. Cloning of a Novel Human Serotonin Receptor (5-HT₇) Positively Coupled to Adenylate Cyclase. *J. Biol. Chem.* **1993**, *268*, 23422–23426.
- (8) Heidmann, D. E.; Metcalf, M. A.; Kohen, R.; Hamblin, M. W. Four 5-HT₇ Receptor Isoforms in Human and Rat Produced by Alternative Splicing. *J. Neurochem.* **1997**, *68*, 1372–1381.
 (9) Jasper, J. R.; To, Z. P.; Kosaka, A.; Eglen, R. M.; Chang, D. J.
- (9) Jasper, J. R.; To, Z. P.; Kosaka, A.; Eglen, R. M.; Chang, D. J. Cloning and Expression of a Truncated Splice Variant of the Human 5-HT₇ Receptor. *Br. J. Pharmacol.* **1997**, *120*, 298P.
- (10) Schoeffter, P.; Ullmer, C.; Bobirnac, I.; Gabbiani, G.; Lubbert, H. Functional, Endogenously Expressed 5-HT₇ Receptors in Human Vascular Smooth Muscle Cells. *Br. J. Pharmacol.* 1996, *117*, 993–994.
- (11) To, Z. P.; Bonhaus, D. W.; Eglen, R. M.; Jakeman, L. B. Characterisation and Distribution of Putative 5-HT₇ Receptors in Guinea Pig Brain. *Br. J. Pharmacol.* **1995**, *115*, 107–116.
- (12) Branchek, T. A.; Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Weinshank, R. L. Autoradiographic Localisation of 5-HT₇ Receptor and its mRNA in Rat CNS by Radioligand Binding and In Situ Hybridisation. *Br. J. Pharmacol.* **1994**, *112*, 100P.
- (13) Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Zgombick, J.; Branchek, T. A. A Receptor Autoradiographic and In Situ Hybridisation Analysis of the Distribution of the 5-HT₇ Receptor in Rat Brain. *Br. J. Pharmacol.* **1996**, *117*, 657–666.
- (14) Schwartz, W. J.; A Clinician's Primer on the Circadian Clock: Its Localization, Function and Resetting. Adv. Int. Med. 1993, 38, 81–106.
- (15) Sleight, A. J.; Carolo, C.; Petit, N.; Zwingelstein, C.; Bourson, A. Identification of 5-HT₇ Receptor Binding Sites in Rat Hypothalamus. *Mol. Pharmacol.* **1995**, *47*, 99–103.
- (16) Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Ulver, A.; Monsma, F. J.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of Typical and Atypical agents to 5-HT₆ and 5-HT₇ Receptors. *J. Pharmacol. Exp. Ther.* **1994**, *268*, 1403–1410.
- (17) Leung, E.; Walsh, L. K. M.; Pulido-Rios, M. T.; Eglen, R. M. Characterisation of Putative 5-HT₇ Receptors Mediating Direct Relaxation in Cynomolgus Monkey Isolated Jugular Vein. Br. J. Pharmacol. **1996**, 117, 926–930.
- (18) Cushing, D. J.; Zgombick, J. M.; Nelson, D. L.; Cohen, M. L. LY215840, A High Affinity 5-HT₇ Receptor Ligand, Blocks Serotonin-Induced Relaxation in Canine Coronary Artery. *J. Pharmacol. Exp. Ther.* **1996**, *277*, 1560–1566.
- (19) Martin, G. R.; Wilson, R. J. Operational Characterisation of a 5-HT₇ Receptor Mediating Direct Vascular Relaxation. *Br. J. Pharmacol.* **1995**, *114*, 383P.
- (20) SmithKline Beecham Patent FR 2694003, published 28th January 1994.
- (21) SmithKline Beecham Patent WO 9729097, published 14th August 1997.
- (22) Miyoshi, M.; Nunami, K.; Sugano, H.; Fujii, T. Structure-taste Relationship of Novel α-L-aspartyl Dipeptide Sweeteners. *Bull. Chem. Soc. Jpn.* **1978**, *51*, 1433–1440.
- (23) Salomon, Y. Adenylate Cyclase Assay. Adv. Cyclic Nucleotide Res. 1979, 10, 35–55.

JM970519E